
March Developer Newsletter

Inside this issue:

Intermix 32 and 64-bit Printer
Applications

1

How to Restrict Printer Driver
File Formats

1

Update ActiveX Controls by a
CAB File

1

Compressions in the Low Level
Interface for PDF SDK

2

Using the High Level Interface
for PDF SDK to Modify and Save
the Contents of the CPDFDoc
Objects

3

The BLACK ICE NEWSLETTER is
published by Black Ice Software,
LLC. The contents of this
newsletter in its entirety are
Copyright © 2009 by Black Ice
Software, LLC. 20 Broad St,
Nashua NH 03064, USA. Black Ice
Software, LLC. does hereby give
permission to reproduce material
contained in this newsletter,
provided credit is given to the
source, and a copy of the
publication that the material
appears in is sent to Black Ice
Software at the above address.

Phone: (603) 882-7711

Fax: (603) 882-1344

 sales@blackice.com

www.blackice.com

Black Ice Software

March 2009

Volume 14, Issue 3
Intermix 32 and 64-bit Printer Applications

Black Ice printer drivers, the
32-bit application can set the
printer settings programmati-
cally without any code
changes. Of course the 64-bit
program can use only the 64-
b i t v e r s i o n o f
BlackIceDEVMODE.dll and
the 32-bit program can use
only the 32-bit version of
BlackIceDEVMODE.dll.

This article shows how you
can use an application using
the BlackIceDEVMODE.dll
to change printing preferences
of a printer driver. The
BlackIceDEVMODE.dll has
two separate versions: one for
32-bit and another for 64-bit.
If the program is a 64-bit ap-
plication it can only be used
on 64-bit operating systems.
This program can not be

started on 32-bit operating
systems.

If the program is a 32-bit ap-
plication it can be used on
both 32 and 64 bit operating
systems, because the 64-bit
operating systems can handle
32-bit applications. Because
the 32-bit version of the
BlackIceDEVMODE.dll is
able to also work with 64-bit

How to Restrict Printer Driver File Formats
[UI FileFormats]
JPEG File=1
Microsoft DIB Format=0

Note: The same file format
name has to be used in the
INI file as it is seen in the file
format combo box.

You are able to restrict the
available file formats on the
File Formats tab of the Print-
ing Preferences of the printer
driver. You can select which
file formats (only one or
more) that can be used for
printing. The available file

formats can be specified
through the printer driver INI
file. The following example
enables the JPEG file format
and disables the bitmap file
format.

Update ActiveX Controls by a CAB File
download the CAB. It will
check the version number in
the .inf file. If the specified
version is larger, it will re-
place the older file.

Here is a sample code snippet
to the version number:

There have been some ques-
tions recently about updating
ActiveX controls in the client
machines with Black Ice
CAB files. This article will
show a technique to keep up
to date the ActiveX controls
in the client machines.
One may read about the
HTML object tag's CODE-
BASE attribute on the follow-

ing web site (you may need to
copy/paste the link):
http://msdn.microsoft.com/en
-us/library/ms533576.aspx
If one wants to force the cli-
ent to reload the CAB file,
one can set the version num-
ber of the current ActiveX
control in the HTML code. If
the client's version number is
lower, the browser will

<object id="BIDISP" width=450 height=420 classid="CLSID:19B50C95-6BB5-
4DFD-B20C-5B9A61FA1C0D" CODEBASE="http://192.168.0.127/4/
Image.cab#Version=10,9,8,0"></object>

Page 2 March Developer Newsletter

Compressions in the Low Level Interface for PDF SDK
As in previous articles it has been mentioned that there are properties of saving a PDF document to a file that one may set. Some
of these properties are about PDF document compression. To reduce file size, PDF supports a number of industry-standard com-
pression filters. Most of these filters are supported by the Black Ice PDF SDK. The following compression filters are supported
for the various data types:
• Non-image streams: FlateDecode (STREAM_FILTER_FLATE)
• Color images: FlateDecode (CIMAGE_FILTER_FLATE), RunLength (CIMAGE_FILTER_RUNLENGTH), Jpeg

(CIMAGE_FILTER_JPEG)
• Monochrome images: FlateDecode (MIMAGE_FILTER_FLATE), RunLength (MIMAGE_FILTER_RUNLENGTH), CCITT

Fax (MIMAGE_FILTER_CCITT_FAX)

If one sets the compression for a PDF stream type but the SDK cannot compress it with the specified algorithm, the PDF SDK
tries to compress the PDF stream with a different algorithm using the following rule:
• CCITT Fax > RunLength > FlateDecode > No compression
• Jpeg > FlateDecode > RunLength > No compression
• FlateDecode > No compression

The following code snippet shows how to set the compressions before saving the PDF document:

CPDF pdf;

// set metadata

CPDFPage page = pdf.AddPage(700.0, 900.0);

// load the content into page

// set encryption and passwords

// set compression
STREAM_FILTER_TYPE streamFilterType = STREAM_FILTER_FLATE;
MONO_IMAGE_FILTER_TYPE monoFileterType = MIMAGE_FILTER_CCITT_FAX;
COLOR_IMAGE_FILTER_TYPE colorFileterType = CIMAGE_FILTER_JPEG;

pdf.SetStreamFilter(streamFilterType);
pdf.SetMonoImageFilter(monoFileterType);
pdf.SetColorImageFilter(colorFileterType);
pdf.SetColorImageQuality(95);

// set font embedding

pdf.SavePDFToFile("c:\\hello.pdf");

This code snippet sets the default compression for non-image streams to the Flate algorithm, CCITT Fax algorithm for mono-
chrome image streams and Jpeg for the color image streams. If Jpeg compression is used one can set the quality of the compres-
sion by using the SetColorImageQuality method. The parameter passed can be between 1 and 100, 100 being the best quality.
During the PDF file generation the PDF SDK will try to compress the streams based on the settings and the rules mentioned pre-
viously.

Page 3 Volume 14, Issue 3

Using the High Level Interface for PDF SDK to Modify and Save the Contents of the
CPDFDoc Objects
This article continues from where the “Using the PDF Interface to load a PDF document into the object oriented structure” arti-
cle has ended. It will explain how a modified page and document can be saved. It will work on a loaded/created document with
one modified page in it.

When one wishes to modify the contents of a page, it is very important to keep track of if there have been any modifications. It
is therefore the user’s responsibility to set a CPDFPageObj object’s m_bModified flag to true whenever one changes an attribute
of one of the members of the page. This flag is however managed by the page object’s member functions.
When the m_bModified flag of a page object is set to true, the page needs to be saved:

// Save the unloaded page if it was modified

if (page->IsModified())
{

if (page->WriteToPDF()
{

// Error handling
}

}

This will write the page’s contents into the PDF SDK’s internal structure, but it will NOT save anything to disk.
Assuming one wouldn’t need to access the page’s objects again, it is also advisable to unload the page data from memory. (The
changed data can still be loaded again if needed.)

// Unload the old page's data
page->Clear();

It is also possible to change a document’s metadata in the CPDFDoc object and should be reviewed before saving the document
to disk. The document object contains some important member objects that modify the way a PDF file is encoded. Compression
settings can be accessed in the CPDFDoc object’s m_compression member variable. In that member object, one may set the
used compression algorithm for saved PDF streams, color images and monochrome images.

Passwording/Encryption settings can be accessed in the CPDFDoc object’s m_encryption member variable. In that member ob-
ject, one may set the user (required to open the document) and owner (required to edit the document) passwords, the user access
permissions and the encryption type and key length.

Document information metadata can be accessed in the CPDFDoc object’s m_info member variable. In that member object, one
may set the document’s title, author, subject, keywords, creator application and trapping information.

After having made the above changes, one is ready to save the document to file. This can be done the following way:

// Save to file
if (!pPDFDocument->SavePDFFile(lpszPathName))
{

// Error handling
}

When closing the PDF document, one can just call:

pPDFInterface->Destroy();

